Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37445052

RESUMO

Cold Spray Additive Manufacturing (CSAM) is a thermal spray technique that is typically used for the repair of metallic components. One of the challenges of CSAM is to improve the geometrical accuracy of the sprayed parts, along with overcoming the inferiority of the mechanical properties of the deposits by tailoring their microstructure with different deposition strategies. For this, Cu, Al, Ti, and Ti6Al4V substrates were reconstructed by two Cold Spray (CS) methods: Traditional (T) and a novel strategy, Metal Knitting (MK). The final geometry, microstructure, and mechanical properties of the reconstructed parts by these two methods were compared. Additionally, we investigated the effects of annealing on the microstructure of sprayed components and its influence on adhesion, resistance to erosion, and abrasive wear. The results indicate that annealing effectively reduces the microstructure defects of the remanufactured parts (up to 30% porosity reduction) and improves the adhesive strength (i.e., below 30 MPa for as-sprayed deposits, and up to 160 MPa for heat-treated Ti4Al4V deposits). Notably, the abrasive and erosive resistance of the Cu and Al annealed deposits sprayed by MK gave very similar results compared to their bulk counterparts, suggesting that it is an efficient method for the reconstruction of damaged parts.

2.
Materials (Basel) ; 15(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36431645

RESUMO

Centrifugal atomization is a rapid solidification technique for producing metal powders. However, its wide application has been limited to the production of common metal powders and their corresponding alloys. Therefore, there is a lack of research on the production of novel materials such as metallic glasses using this technology. In this paper, aluminum-based glassy powders (Al86Ni8Y4.5La1.5) were produced by centrifugal atomization. The effects of disk speed, atomization gas, and particle size on the cooling rate and the final microstructure of the resulting powder were investigated. The powders were characterized using SEM and XRD, and the amorphous fractions of the atomized powder samples were quantified through DSC analysis. A theoretical model was developed to evaluate the thermal evolution of the atomized droplets and to calculate their cooling rate. The average cooling rate experienced by the centrifugally atomized powder was calculated to be approximately 7 × 105 Ks-1 for particle sizes of 32.5 µm atomized at 40,000 rpm in a helium atmosphere. Amorphous fractions from 60% to 70% were obtained in particles with sizes of up to 125 µm in the most favorable atomization conditions.

3.
Materials (Basel) ; 15(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234127

RESUMO

Cold Spray Additive Manufacturing (CSAM) is an emergent technique to produce parts by the additive method, and, like other technologies, it has pros and cons. Some advantages are using oxygen-sensitive materials to make parts, such as Ti alloys, with fast production due to the high deposition rate, and lower harmful residual stress levels. However, the limitation in the range of the parts' geometries is a huge CSAM con. This work presents a new conceptual strategy for CSAM spraying. The controlled manipulation of the robot arm combined with the proper spraying parameters aims to optimize the deposition efficiency and the adhesion of particles on the part sidewalls, resulting in geometries from thin straight walls, less than 5 mm thick, up to large bulks. This new strategy, Metal Knitting, is presented regarding its fundamentals and by comparing the parts' geometries produced by Metal Knitting with the traditional strategy. The Metal Knitting described here made parts with vertical sidewalls, in contrast to the 40 degrees of inclination obtained by the traditional strategy. Their mechanical properties, microstructures, hardness, and porosity are also compared for Cu, Ti, Ti6Al4V, 316L stainless steel, and Al.

4.
Nanomaterials (Basel) ; 11(8)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34443963

RESUMO

The NOx storage mechanism on BaTi0.8Cu0.2O3 catalyst were studied using different techniques. The results obtained by XRD, ATR, TGA and XPS under NOx storage-regeneration conditions revealed that BaO generated on the catalyst by decomposition of Ba2TiO4 plays a key role in the NOx storage process. In situ DRIFTS experiments under NO/O2 and NO/N2 show that nitrites and nitrates are formed on the perovskite during the NOx storage process. Thus, it seems that, as for model NSR catalysts, the NOx storage on BaTi0.8Cu0.2O3 catalyst takes place by both "nitrite" and "nitrate" routes, with the main pathway being highly dependent on the temperature and the time on stream: (i) at T < 350 °C, NO adsorption leads to nitrites formation on the catalyst and (ii) at T > 350 °C, the catalyst activity for NO oxidation promotes NO2 generation and the nitrate formation.

5.
Nanomaterials (Basel) ; 9(11)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683700

RESUMO

BaFe1-xCuxO3 perovskites (x = 0, 0.1, 0.3 and 0.4) have been synthetized, characterized and tested for soot oxidation in both Diesel and Gasoline Direct Injection (GDI) exhaust conditions. The catalysts have been characterized by BET, ICP-OES, SEM-EDX, XRD, XPS, H2-TPR and O2-TPD and the results indicate the incorporation of copper in the perovskite lattice which leads to: i) the deformation of the initial hexagonal perovskite structure for the catalyst with the lowest copper content (BFC1), ii) the modification to cubic from hexagonal structure for the high copper content catalysts (BFC3 and BFC4), iii) the creation of a minority segregated phase, BaOx-CuOx, in the highest copper content catalyst (BFC4), iv) the rise in the quantity of oxygen vacancies/defects for the catalysts BFC3 and BFC4, and v) the reduction in the amount of O2 released in the course of the O2-TPD tests as the copper content increases. The BaFe1-xCuxO3 perovskites catalyze both the NO2-assisted diesel soot oxidation (500 ppm NO, 5% O2) and, to a lesser extent, the soot oxidation under fuel cuts GDI operation conditions (1% O2). BFC0 is the most active catalysts as the activity seems to be mainly related with the amount of O2 evolved during an. O2-TPD, which decreases with copper content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...